COMPUTER VISION
Course Code BAI515A
CIE Marks 50
Teaching Hours/Week (L: T:P: S) 3:0:0:0
SEE Marks 50
Total Hours of Pedagogy 40
Total Marks 100
Credits 03
Exam Hours 3
Examination type (SEE) Theory
Module-1
Introduction: What is computer vision? A brief history. Image Formation: Photometric image
formation, The digital camera. Image processing: Point operators, Linear filtering.
Module-2
Image processing: More neighborhood operators, Fourier transforms, Pyramids and wavelets, and
Geometric transformations.
Module-3
Image Restoration and Reconstruction: A model of Image degradation/restoration process,
restoration in the presence of noise only, periodic noise reduction by frequency domain filtering.
Image Segmentation: Fundamentals, Point, Line and edge detection, thresholding (Foundation &
Basic global thresholding only), Segmentation by region growing & region splitting & merging.
Module-4
Color Image Processing: Color fundamentals, color models, Pseudocolor image processing, full color
image processing, color transformations, color image smoothing and sharpening, Using color in image
segmentation, Noise in color images.
Module-5
Morphological Image Processing: Preliminaries, Erosion and Dilation, opening and closing, Hit-ormiss transform, some basic morphological algorithms.
Feature Extraction: Background, Boundary preprocessing (Boundary following & Chain codes only).
Image pattern Classification: Background, Patterns and classes, Pattern classification by prototype
matching (Minimum distance classifier only).
Suggested Learning Resources:
Textbooks
1. Richard Szeliski, Computer Vision: Algorithms and Applications (Texts in Computer Science), 2nd
Edition, 2022, Springer.
2. Rafael C G., Woods R E. and Eddins S L, Digital Image Processing, Pearson, 4th edition, 2019.
Reference books
1. David Forsyth and Jean Ponce, Computer Vision: A Modern Approach, 2nd Edition, Pearson, 2015.
2. Reinhard Klette, Concise Computer Vision - An Introduction into Theory and Algorithms, Springer,
2014.

.png)
0 Comments